Pulsar Candidate Sifting Using Multi-input Convolution Neural Networks
نویسندگان
چکیده
منابع مشابه
rodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Multi-input Cardiac Image Super-Resolution Using Convolutional Neural Networks
3D cardiac MR imaging enables accurate analysis of cardiac morphology and physiology. However, due to the requirements for long acquisition and breath-hold, the clinical routine is still dominated by multi-slice 2D imaging, which hamper the visualization of anatomy and quantitative measurements as relatively thick slices are acquired. As a solution, we propose a novel image super-resolution (SR...
متن کاملModel Reference Adaptive Control for Multi-Input Multi-Output Nonlinear Systems Using Neural Networks
This paper presents a method of MRAC(model reference adaptive control) for multi-input multi-output(MIMO) nonlinear systems using NNs(neural networks). The control input is given by the sum of the output of a model reference adaptive controller and the output of the NN(neural network). The NN is used to compensate the nonlinearity of plant dynamics that is not taken into consideration in the us...
متن کاملFace Recognition Using Convolution Filters and Neural Networks
Human Face Recognition has become a potential method of biometric authentication because of its most non-intrusive and user-friendly nature. Automatic face recognition poses various challenges due to: (a) inherent variability of face due to age, gender and race; (b) different facial expressions and orientations of same person’s face; and (c) images containing faces have high degree of variabili...
متن کاملObject Detection for Semantic SLAM using Convolution Neural Networks
Conventional SLAM (Simultaneous Localization and Mapping) systems typically provide odometry estimates and point-cloud reconstructions of an unknown environment. While these outputs can be used for tasks such as autonomous navigation, they lack any semantic information. Our project implements a modular object detection framework that can be used in conjunction with a SLAM engine to generate sem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Astrophysical Journal
سال: 2020
ISSN: 1538-4357
DOI: 10.3847/1538-4357/aba838